Wednesday, August 29, 2007

heat engines

• Ten things you didn't know about Wikipedia • Heat engine
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Energy Portal
A heat engine is a physical or theoretical device that converts thermal energy to mechanical output. The mechanical output is called work, and the thermal energy input is called heat. Heat engines typically run on a specific thermodynamic cycle. Heat engines are often named after the thermodynamic cycle they are modeled by. They often pick up alternate names, such as gasoline/petrol, turbine, or steam engines. Heat engines can generate heat inside the engine itself or it can absorb heat from an external source. Heat engines can be open to the atmospheric air or sealed and closed off to the outside (Open or closed cycle).

In engineering and thermodynamics, a heat engine performs the conversion of heat energy to mechanical work by exploiting the temperature gradient between a hot "source" and a cold "sink". Heat is transferred from the source, through the "working body" of the engine, to the sink, and in this process some of the heat is converted into work by exploiting the properties of a working substance (usually a gas or liquid).

Figure 1: Heat engine diagramContents [hide]
1 Overview
2 Everyday examples
3 Examples of heat engines
3.1 Phase change cycles
3.2 Gas only cycles
3.3 Liquid only cycles
3.4 Electron cycles
3.5 Magnetic cycles
3.6 Cycles used for refrigeration
4 Efficiency
5 Other criteria of heat engine performance
6 Heat engine enhancements
7 Heat engine processes
8 References
9 See also
10 External links

[edit] Overview
Heat engines are often confused with the cycles they attempt to mimic. Typically when describing the physical device the term 'engine' is used. When describing the model the term 'cycle' is used.

In thermodynamics, heat engines are often modeled using a standard engineering model such as the Otto cycle (4-stroke/2-stroke). Actual data from an operating engine, one is called an indicator diagram, is used to refine the model. All modern implementations of heat engines do not exactly match the thermodynamic cycle they are modeled by. One could say that the thermodynamic cycle is an ideal case of the mechanical engine. One could equally say that the model doesn't quite perfectly match the mechanical engine. However, understanding is gained from the simplified models, and ideal cases they may represent.

In general terms, the larger the difference in temperature between the hot source and the cold sink, the larger is the potential thermal efficiency of the cycle. On Earth, the cold side of any heat engine is limited to close to the ambient temperature of the environment, or not much lower than 300 kelvins, so most efforts to improve the thermodynamic efficiencies of various heat engines focus on increasing the temperature of the source, within material limits.

The efficiency of various heat engines proposed or used today ranges from 3 percent [1](97 percent waste heat) for the OTEC ocean power proposal through 25 percent for most automotive engines, to 45 percent for a supercritical coal plant, to about 60 percent for a steam-cooled combined cycle gas turbine. All of these processes gain their efficiency (or lack thereof) due to the temperature drop across them.

OTEC uses the temperature difference of ocean water on the surface and ocean water from the depths, a small difference of perhaps 25 degrees Celsius, and so the efficiency must be low. The combined cycle gas turbines use natural-gas fired burners to heat air to near 1530 degrees Celsius, a difference of a large 1500 degrees Celsius, and so the efficiency can be large when the steam-cooling cycle is added in. [2]

[edit] Everyday examples
Examples of everyday heat engines include: the steam engine, the diesel engine, and the gasoline (petrol) engine in an automobile. A common toy that is also a heat engine is a drinking bird. All of these familiar heat engines are powered by the expansion of heated gases. The general surroundings are the heat sink, providing relatively cool gases which, when heated, expand rapidly to drive the mechanical motion of the engine.

[edit] Examples of heat engines
It is important to note that although some cycles have a typical combustion location (internal external), they often can be implemented as the other combustion cycle. For example, John Ericsson developed an external heated engine running on a cycle very much like the earlier Diesel cycle. In addition, the externally heated engines can often be implemented in open or closed cycles.

What this boils down to is there are thermodynamic cycles and a large number of ways of implementing them with mechanical devices called engines.

[edit] Phase change cycles
In these cycles and engines, the working fluids are gases and liquids. The engine converts the working fluid from a gas to a liquid.

Rankine cycle (classical steam engine)
Regenerative cycle (steam engine more efficient than Rankine cycle)
Vapor to liquid cycle (Drinking bird)
Liquid to solid cycle (Frost heaving — water changing from ice to liquid and back again can lift rock up to 60 m.)
Solid to gas cycle (Dry ice cannon — Dry ice sublimes to gas.)

[edit] Gas only cycles
In these cycles and engines the working fluid are always like gas:

Carnot cycle (Carnot heat engine)
Ericsson Cycle (Caloric Ship John Ericsson)
Stirling cycle (Stirling engine, thermoacoustic devices)
Internal combustion engine (ICE):
Otto cycle (eg. Gasoline/Petrol engine, high-speed diesel engine)
Diesel cycle (eg. low-speed diesel engine)
Atkinson Cycle (Atkinson Engine)
Brayton cycle or Joule cycle originally Ericsson Cycle (gas turbine)
Lenoir cycle (e.g., pulse jet engine)
Miller cycle

[edit] Liquid only cycles
In these cycles and engines the working fluid are always like liquid:

Stirling Cycle (Malone engine)

[edit] Electron cycles
Thermoelectric (Peltier-Seebeck effect)
Thermionic emission
Thermotunnel cooling

[edit] Magnetic cycles
Thermo-magnetic motor (Tesla)

[edit] Cycles used for refrigeration
A refrigerator is a heat pump: a heat engine in reverse. Work is used to create a heat differential. Many cycles can run in reverse to move heat from the cold side to the hot side, making the cold side cooler and the hot side hotter. Internal combustion engine versions of these cycles are, by their nature, not reversible.

Vapor-compression refrigeration
Stirling cryocooler
Gas-absorption refrigerator
Air cycle machine
Vuilleumier refrigeration

[edit] Efficiency
The efficiency of a heat engine relates how much useful power is output for a given amount of heat energy input.

From the laws of thermodynamics:

dW = − PdV is the work extracted from the engine. (It is negative since work is done by the engine.)
dQh = ThdSh is the heat energy taken from the high temperature system. (It is negative since heat is extracted from the source, hence ( − dQh) is positive.)
dQc = TcdSc is the heat energy delivered to the cold temperature system. (It is positive since heat is added to the sink.)
In other words, a heat engine absorbs heat energy from the high temperature heat source, converting part of it to useful work and delivering the rest to the cold temperature heat sink.

In general, the efficiency of a given heat transfer process (whether it be a refrigerator, a heat pump or an engine) is defined informally by the ratio of "what you get" to "what you put in."

In the case of an engine, one desires to extract work and puts in a heat transfer.

The theoretical maximum efficiency of any heat engine depends only on the temperatures it operates between. This efficiency is usually derived using an ideal imaginary heat engine such as the Carnot heat engine, although other engines using different cycles can also attain maximum efficiency. Mathematically, this is due to the fact that in reversible processes, the change in entropy of the cold reservoir is the negative of that of the hot reservoir (i.e., dSc = − dSh), keeping the overall change of entropy zero. Thus:

where Th is the absolute temperature of the hot source and Tc that of the cold sink, usually measured in kelvin. Note that dSc is positive while dSh is negative; in any reversible work-extracting process, entropy is overall not increased, but rather is moved from a hot (high-entropy) system to a cold (low-entropy one), decreasing the entropy of the heat source and increasing that of the heat sink.

The reasoning behind this being the maximal efficiency goes as follows. It is first assumed that if a more efficient heat engine than a Carnot engine is possible, then it could be driven in reverse as a heat pump. Mathematical analysis can be used to show that this assumed combination would result in a net decrease in entropy. Since, by the second law of thermodynamics, this is forbidden, the Carnot efficiency is a theoretical upper bound on the efficiency of any process.

Empirically, no engine has ever been shown to run at a greater efficiency than a Carnot cycle heat engine.

Figure 2: Carnot cycle efficiency
Figure 3: Carnot cycle efficiencyHere are two plots, Figure 2 and Figure 3, for the Carnot cycle efficiency. One plot indicates how the cycle efficiency changes with an increase in the heat addition temperature for a constant compressor inlet temperature, while the other indicates how the cycle efficiency changes with an increase in the heat rejection temperature for a constant turbine inlet temperature.

[edit] Other criteria of heat engine performance
One problem with the ideal Carnot efficiency as a criterion of heat engine performance is the fact that by its nature, any maximally-efficient Carnot cycle must operate at an infinitesimal temperature gradient. This is due to the fact that any transfer of heat between two bodies at differing temperatures is irreversible, and therefore the Carnot efficiency expression only applies in the infinitesimal limit. The major problem with that is that the object of most heat engines is to output some sort of power, and infinitesimal power is usually not what is being sought.

A different measure of heat engine efficiency is given by the endoreversible process, which is identical to the Carnot cycle except in that the two processes of heat transfer are not reversible. As derived in Callen (1985), the efficiency for such a process is given by:

This model does a better job of predicting how well real-world heat engines can do, as can be seen in the following table (Callen):

Efficiencies of Power Plants Power Plant Tc (°C) Th (°C) η (Carnot) η (Endoreversible) η (Observed)
West Thurrock (UK) coal-fired power plant 25 565 0.64 0.40 0.36
CANDU (Canada) nuclear power plant 25 300 0.48 0.28 0.30
Larderello (Italy) geothermal power plant 80 250 0.33 0.178 0.16

As shown, the endoreversible efficiency much more closely models the observed data.

[edit] Heat engine enhancements
Engineers have studied the various heat engine cycles extensively in an effort to improve the amount of usable work they could extract from a given power source. The Carnot Cycle limit cannot be reached with any gas-based cycle, but engineers have worked out at least two ways to possibly go around that limit, and one way to get better efficiency without bending any rules.

1) Increase the temperature difference in the heat engine. The simplest way to do this is to increase the hot side temperature, and is the approach used in modern combined-cycle gas turbines. Unfortunately, NOx production and material limits (melting the turbine blades) place a hard limit to how hot you can make a workable heat engine. Modern gas turbines are about as hot as they can become and still maintain acceptable NOx pollution levels. Another way of increasing efficiency is to lower the output temperature. Once new method of doing so is to use mixed chemical working fluids, and then exploit the changing behavior of the mixtures. One of the most famous is the so-called Kalina Cycle, which uses a 70/30 mix of ammonia and water as its working fluid. This mixture allows the cycle to generate useful power at considerably lower temperatures than most other processes.

2) Exploit the physical properties of the working fluid. The most common such exploit is the use of water above the so-called critical point, or so-called supercritical steam. The behavior of fluids above their critical point changes radically, and with materials such as water and carbon dioxide it is possible to exploit those changes in behavior to extract greater thermodynamic efficiency from the heat engine, even if it is using a fairly conventional Brayton or Rankine cycle. A newer and very promising material for such applications is CO2. SO2 and xenon have also been considered for such applications, although SO2 is a little toxic for most.

3) Exploit the chemical properties of the working fluid. A fairly new and novel exploit is to use exotic working fluids with advantageous chemical properties. One such is nitrogen dioxide (NO2), a toxic component of smog, which has a natural dimer as di-nitrogen tetraoxide (N2O4). At low temperature, the N2O4 is compressed and then heated. The increasing temperature causes each N2O4 to break apart into two NO2 molecules. This lowers the molecular weight of the working fluid, which drastically increases the efficiency of the cycle. Once the NO2 has expanded through the turbine, it is cooled by the heat sink, which causes it to recombine into N2O4. This is then fed back to the compressor for another cycle. Such species as aluminum bromide (Al2Br6), NOCl, and Ga2I6 have all been investigated for such uses. To date, their drawbacks have not warranted their use, despite the efficiency gains that can be realized. [3]

[edit] Heat engine processes
Cycle/Process Compression Heat Addition Expansion Heat Rejection
Power cycles normally with external combustion
Carnot isentropic isothermal isentropic isothermal
Stirling isothermal isometric isothermal isometric
Ericsson isothermal isobaric isothermal isobaric
Power cycles normally with internal combustion
Otto (Petrol) adiabatic isometric adiabatic isometric
Diesel adiabatic isobaric adiabatic isometric
Brayton (Jet) adiabatic isobaric adiabatic isobaric

Each process is one of the following:

isothermal (at constant temperature, maintained with heat added or removed from a heat source or sink)
isobaric (at constant pressure)
isometric/isochoric (at constant volume)
adiabatic (no heat is added or removed from the system during adiabatic process)

[edit] References
^ en:Ocean_thermal_energy_conversion
^ U.S. Department of Energy • Office of Fossil Energy, National Energy Technology Laborator: Advanced Turbine Systems. Advancing The Gas Turbine Power Industry
^ Nuclear Reactors Concepts and Thermodynamic Cycles
Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics, 2nd ed., W. H. Freeman Company. ISBN 0-7167-1088-9.
Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics, 2nd ed., John Wiley & Sons, Inc.. ISBN 0-471-86256-8.

[edit] See also
Reciprocating engine for a general description of the mechanics of piston engines
Heat pump
Carnot heat engine
Timeline of heat engine technology
Heat engine classifications
[show] Thermodynamic cycles
Cycles normally with external combustion
Gas cycles without phasechange - hot air engine cycles
Bell Coleman cycle · Brayton/Joule cycle; (Externally heated) · Carnot cycle
· Stirling cycle · Pseudo Stirling cycle is same as Adiabatic Stirling cycle [1] [2]
· Ericsson cycle · Stoddard cycle · Ported constant volume cycle [3]
· Vuilleumier cycle

Cycles with phasechange
Kalina cycle · Rankine cycle · Regenerative cycle · Two phased Stirling cycle [4]
Cycles normally with internal combustion
Atkinson cycle · Brayton/Joule cycle · Diesel cycle · Otto cycle · Lenoir cycle · Miller cycle
Cycle mixing
Combined cycle · HEHC cycle [5][6] · Mixed/Dual Cycle
Not categorized
Claude cycle [7] · Fickett-Jacobs cycle · Gifford-McMahon cycle [8] · Hirn cycle
· Humphrey cycle · Linde-Hampson cycle

[show]Heat engine types/configurations using thermodynamic cycles (Power cycles)
Stroke number and stroke parting
Crower six stroke · Four-stroke cycle · Scuderi Split Cycle Engine · One-stroke cycle · Six stroke engine · Two-stroke cycle
Different work volume types (incl. Pistonless rotary engine)
Britalus Rotary Engine · Combustion chamber · Controlled Combustion Engine · Jet engine · Orbital engine · Piston engine · Quasiturbine · Rocket engine · Swing-piston engine · Toroidal engine · Trochilic engine · Tschudi engine · Twingle engine · Wankel engine
Different work volume ports and main forms of valves
Cylinder head porting · D slide valve · Four-stroke cycle engine valves · Manifold · Multi-valve · Piston valve · Poppet valve · Rocket engine nozzles · Sleeve valve
Different pistons layouts
Bourke engine · Delta engine · Double acting/differential cylinder · Opposed piston engine · Radial engine · Rotary engine · Single cylinder engine · Stelzer engine · Straight engine
Different main rotational motion mechanisms or arc to (or even almost) pistons back-and-forth.
Sector straight-line linkage [9] · Connecting rod · Coomber Rotary Engine [10] · Crank Substitute Engine [11] · Crankshaft · Evans linkage [12] · Cam · Parallel motion · Peaucellier-Lipkin linkage · Piston rod · QRMC Stirling/HydraLink [13] · Revolving Cylinder Engine [14] · Rhombic drive · Scotch yoke · Swashplate · Swashplate engine · Watt's linkage
One-way stop-and-go like rotational motion mechanisms to rotation.
Toroidal engine · Trochilic engine

[edit] External links
Heat Engine
Webarchive backup: Refrigeration Cycle Citat: "...The refrigeration cycle is basically the Rankine cycle run in reverse..."
Red Rock Energy Solar Heliostats: Heat Engine Projects Citat: "...Choosing a Heat Engine..."
Overview of heat engine types
The rotary piston array machine
The gyroscope combustion motor
The external combustion air engine
Retrieved from ""
Categories: Fundamental physics concepts | Heat | Energy conversion | HVAC | Thermodynamics
ViewsArticle Discussion Edit this page History Personal toolsSign in / create account Navigation
Main page
Featured content
Current events
Random article
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Donate to Wikipedia
What links here
Related changes
Upload file
Special pages
Printable version
Permanent link
Cite this article
In other languages
Bahasa Indonesia
‪Norsk (bokmål)‬
Simple English

This page was last modified 13:18, 26 August 2007. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.
Privacy policy About Wikipedia Disclaimers
Your continued donations keep Wikipedia running!

1 comment:

retrodynamic said...

Technology Submission - Novel Rotary-Turbo-InFlow Tech - Featured Development

Atypical InFlow Thermodynamic
Technology Proposal Submission
Novel Fueled Motor Engine Type

*State of the art Innovative concept Top system Higher efficient percent.
Have similar system of the Aeolipile Heron Steam device from Alexandria 10-70 AD.

YouTube; * Atypical New • GEARTURBINE / Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Thrust Way Type - Non Waste Looses

*8-X/Y Thermodynamic CYCLE - Way Steps:
1)1-Compression / bigger
2)2-Turbo 1 cold
3)2-Turbo 2 cold
4)2-Combustion - circular motion flames / opposites
5)2-Thrust - single turbo & planetary gears / ying yang
6)2-Turbo 2 hot
7)2-Turbo 1 hot
8)1-Turbine / bigger

-New Form-Function Motor-Engine Device. Next Step, Epic Design Change, Broken-Seal Revelation. -Desirable Power-Plant Innovation.

-With Retrodynamic Dextrogiro vs. Levogiro Phenomenon Effect. / Rotor-RPM VS InFlow / front to front; "Collision-Interaction Type" - inflow vs. blades-gear-move. Technical unique dynamic innovative motion mode. [Retrodynamic Reaction = When the inflow have more velocity the rotor have more RPM Acceleration, with high (XY Position) Momentum] Which the internal flow (and rotor) duplicate its speed, when activated being in a rotor (and inflow) with [inverse] opposite Turns. A very strong Novel concept of torque power thrust.

-Non-waste parasitic looses system for cooling, lubrication & combustion.

-Shape-Mass + Rotary-Motion = Inertia-Dynamic / Form-Function Wide [Flat] Cylindrical shape + positive dynamic rotary mass = continue Inertia kinetic positive tendency motion. Like a Flywheel.

-Combustion 2Two continue circular [Rockets] flames. [ying yang] opposite to the other. – With 2TWO very long distance INFLOW [inside propulsion] CONDUITS. -4 TURBOS Rotary Total Thrust-Power Regeneration Power System. -Mechanical direct 2two [Small] Planetary Gears at polar position. -Like the Ying Yang Symbol/Concept. -Wide out the Rotor circumference were have much more lever [HIGH Torque] POWER THRUST. -Military benefits; No blade erosion by sand & very low heat target signature profile. -3 points of power thrust; 1-flow way, 2-gear, 3-turbine. *Patent; Dic. 1991 IMPI Mexico #197187 All Rights Reserved. Carlos Barrera.